Michaelis-Menten equation for an enzyme in an oscillating electric field.

نویسندگان

  • B Robertson
  • R D Astumian
چکیده

The electric charges on an enzyme may move concomitantly with a conformational change. Such an enzyme will absorb energy from an oscillating electric field. If in addition the enzyme has a larger association constant for substrate than for product, as is often true, it can use this energy to drive the catalyzed reaction away from equilibrium. Approximate analytical expressions are given for the field-driven flux, electrical power absorbed, free-energy produced per unit time, thermodynamic efficiency, and zero-flux concentrations. The field-driven flux is written as a generalized Michaelis-Menten equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method

The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...

متن کامل

Determination of Kinetic Parameters for Catalytic Isomerization of Glucose to Fructose by immobilized Glucose Isomerase in an Aqueous-Ethanol Medium

Catalytic isomerization of glucose to fructose by immobilized glucose isomerase in an aqueous-ethanol medium was studied. Using Michaelis-Menten equation and Haldane relationship, the main kinetic parameters were determined: Kmf, Vmf, Kmr, Vmr. By comparing the aqueous-ethanol medium with an aqueous solution, the measured values of Kmr and Kmf were increased in the aqueous-ethanol solution, whi...

متن کامل

Determination of Kinetic Parameters for Catalytic Isomerization of Glucose to Fructose by immobilized Glucose Isomerase in an Aqueous-Ethanol Medium

Catalytic isomerization of glucose to fructose by immobilized glucose isomerase in an aqueous-ethanol medium was studied. Using Michaelis-Menten equation and Haldane relationship, the main kinetic parameters were determined: Kmf, Vmf, Kmr, Vmr. By comparing the aqueous-ethanol medium with an aqueous solution, the measured values of Kmr and Kmf were increased in the aqueous-ethanol solution, whi...

متن کامل

Alternative Perspectives of Enzyme Kinetic Modeling

The basis of enzyme kinetic modelling was established during the early 1900’s when the work of Leonor Michaelis and Maud Menten produced a pseudo-steady state equation linking enzymatic catalytic rate to substrate concentration (Michaelis & Menten, 1913). Building from the Michaelis-Menten equation, other equations used to describe the effects of modifiers of enzymatic activity were developed b...

متن کامل

Parameter estimation using a direct solution of the integrated Michaelis-Menten equation.

A novel method of estimating enzyme kinetic parameters is presented using the Lambert omega function coupled with nonlinear regression. Explicit expressions for the substrate and product concentrations in the integrated Michaelis-Menten equation were obtained using the omega function which simplified kinetic parameter estimation as root-solving and numerical integration of the Michaelis-Menten ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 1990